If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-15t^2+20t=0
a = -15; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-15)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-15}=\frac{-40}{-30} =1+1/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-15}=\frac{0}{-30} =0 $
| 38-4z=5(z-5) | | 13x-31=86 | | (1/8)a-6=1 | | (2x)-(⅗)=(½) | | x^2+5x+600=0 | | 18=2+7n-5 | | M+8=3+m-5-5m | | 36.2+3y=9y+20 | | 3x=-65 | | 22-3n=13 | | (3/4)x=(1/2) | | 5y+6=15 | | 6=d/3-2 | | (3/4)x=(½) | | 28=v/5-11 | | -8+6b-8b=-3-7b | | 3x-11=4x-4 | | 7=4x+23 | | 9-5x=2x+3 | | 360=10x^2+120 | | 5x+5+55=180 | | 6v-7v=-1 | | -9+j=6 | | 7x+2=-42 | | (¾)x=(½) | | 1/3=2b-1/2 | | s+6300=3 | | 2w+-21=9w+14 | | -6=(3x)/5 | | 6v+14=4v+32 | | 6a/7-1=11 | | -9+j=|-8-2| |